/*
** Copyright (C) 2001-2024 Zabbix SIA
**
** This program is free software: you can redistribute it and/or modify it under the terms of
** the GNU Affero General Public License as published by the Free Software Foundation, version 3.
**
** This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
** without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
** See the GNU Affero General Public License for more details.
**
** You should have received a copy of the GNU Affero General Public License along with this program.
** If not, see .
**/
#include "zbxsysinfo.h"
#include "../sysinfo.h"
#include "zbxregexp.h"
#include "zbxjson.h"
#include "zbxstr.h"
#include
/* in OpenBSD 5.1 KERN_PROC2 became KERN_PROC and structure kinfo_proc2 became kinfo_proc */
#if OpenBSD >= 201205 /* OpenBSD 5.1 version as year and month */
# ifndef KERN_PROC2
# define KERN_PROC2 KERN_PROC
# endif
# ifndef kinfo_proc2
# define kinfo_proc2 kinfo_proc
# endif
#endif
#ifdef KERN_PROC2
# define ZBX_P_COMM p_comm
# define ZBX_P_FLAG p_flag
# define ZBX_P_PID p_pid
# define ZBX_P_PPID p_ppid
# define ZBX_P_TID p_tid
# define ZBX_P_STAT p_stat
# define ZBX_P_VM_RSSIZE p_vm_rssize
# define ZBX_P_VM_VSIZE p_vm_map_size
# define ZBX_P_VM_TSIZE p_vm_tsize
# define ZBX_P_VM_DSIZE p_vm_dsize
# define ZBX_P_VM_SSIZE p_vm_ssize
# define ZBX_P_MAJFLT p_uru_majflt
# define ZBX_P_SWAP p_uru_nswap
# define ZBX_P_INBLOCK p_uru_inblock
# define ZBX_P_OUBLOCK p_uru_oublock
# define ZBX_P_NVCSW p_uru_nvcsw
# define ZBX_P_NIVCSW p_uru_nivcsw
# define ZBX_P_UTIME p_uutime_sec
# define ZBX_P_STIME p_ustime_sec
# define ZBX_P_UID p_ruid
# define ZBX_P_GID p_rgid
# define ZBX_STRUCT_KINFO_PROC kinfo_proc2
# define ZBX_KINFO_MIBS_NUM 6
#else
# define ZBX_P_COMM kp_proc.p_comm
# define ZBX_P_FLAG kp_proc.p_flag
# define ZBX_P_PID kp_proc.p_pid
# define ZBX_P_PPID kp_eproc.e_ppid
# define ZBX_P_TID kp_proc.p_tid
# define ZBX_P_STAT kp_proc.p_stat
# define ZBX_P_VM_RSSIZE kp_eproc.e_vm.vm_rssize
# define ZBX_P_VM_VSIZE kp_eproc.e_vm.vm_map.size
# define ZBX_P_VM_TSIZE kp_eproc.e_vm.vm_tsize
# define ZBX_P_VM_DSIZE kp_eproc.e_vm.vm_dsize
# define ZBX_P_VM_SSIZE kp_eproc.e_vm.vm_ssize
# define ZBX_P_MAJFLT kp_eproc.e_pstats.p_ru.ru_majflt
# define ZBX_P_SWAP kp_eproc.e_pstats.p_ru.ru_nswap
# define ZBX_P_INBLOCK kp_eproc.e_pstats.p_ru.ru_inblock
# define ZBX_P_OUBLOCK kp_eproc.e_pstats.p_ru.ru_oublock
# define ZBX_P_NVCSW kp_eproc.e_pstats.p_ru.ru_nvcsw
# define ZBX_P_NIVCSW kp_eproc.e_pstats.p_ru.ru_nivcsw
# define ZBX_P_UTIME kp_eproc.e_pstats.p_ru.ru_utime.tv_sec
# define ZBX_P_STIME kp_eproc.e_pstats.p_ru.ru_stime.tv_sec
# define ZBX_P_UID kp_proc.p_ruid
# define ZBX_P_GID kp_proc.p_rgid
# define ZBX_STRUCT_KINFO_PROC kinfo_proc
# define ZBX_KINFO_MIBS_NUM 4
#endif
typedef struct
{
int pid;
int ppid;
int tid;
char *name;
char *cmdline;
char *state;
char *tname;
zbx_uint64_t processes;
char *user;
char *group;
zbx_uint64_t uid;
zbx_uint64_t gid;
zbx_uint64_t cputime_user;
zbx_uint64_t cputime_system;
zbx_uint64_t ctx_switches;
zbx_int64_t threads;
zbx_uint64_t page_faults;
zbx_int64_t fds;
zbx_uint64_t io_read_op;
zbx_uint64_t io_write_op;
zbx_uint64_t vsize;
zbx_uint64_t rss;
zbx_uint64_t size;
zbx_uint64_t tsize;
zbx_uint64_t dsize;
zbx_uint64_t ssize;
zbx_uint64_t swap;
}
proc_data_t;
ZBX_PTR_VECTOR_DECL(proc_data_ptr, proc_data_t *)
ZBX_PTR_VECTOR_IMPL(proc_data_ptr, proc_data_t *)
/******************************************************************************
* *
* Purpose: frees process data structure *
* *
******************************************************************************/
static void proc_data_free(proc_data_t *proc_data)
{
zbx_free(proc_data->name);
zbx_free(proc_data->cmdline);
zbx_free(proc_data->state);
zbx_free(proc_data->tname);
zbx_free(proc_data->user);
zbx_free(proc_data->group);
zbx_free(proc_data);
}
#define ARGS_START_SIZE 64
static int proc_argv(pid_t pid, char ***argv, size_t *argv_alloc, int *argc)
{
size_t sz;
int mib[4], nargv = 0;
if (NULL == *argv)
{
*argv_alloc = ARGS_START_SIZE;
*argv = zbx_malloc(*argv, *argv_alloc);
}
mib[0] = CTL_KERN;
mib[1] = KERN_PROC_ARGS;
mib[2] = (int)pid;
mib[3] = KERN_PROC_ARGV;
retry:
sz = *argv_alloc;
if (0 != sysctl(mib, 4, *argv, &sz, NULL, 0))
{
if (errno == ENOMEM)
{
*argv_alloc *= 2;
*argv = zbx_realloc(*argv, *argv_alloc);
goto retry;
}
return FAIL;
}
while (NULL != (*argv)[nargv])
nargv++;
*argc = nargv;
return SUCCEED;
}
static void collect_args(char **argv, int argc, char **args, size_t *args_alloc)
{
size_t args_offset = 0;
if (0 == *args_alloc)
{
*args_alloc = ARGS_START_SIZE;
*args = zbx_malloc(*args, *args_alloc);
}
for (int i = 0; i < argc; i++)
zbx_snprintf_alloc(args, args_alloc, &args_offset, "%s ", argv[i]);
if (0 != args_offset)
args_offset--; /* ' ' */
(*args)[args_offset] = '\0';
}
#undef ARGS_START_SIZE
int proc_mem(AGENT_REQUEST *request, AGENT_RESULT *result)
{
char *procname, *proccomm, *param, *rxp_error = NULL;
int do_task, pagesize, count, i, proccount = 0, invalid_user = 0, proc_ok, comm_ok,
ret = SYSINFO_RET_OK;
double value = 0.0, memsize = 0;
size_t sz;
struct passwd *usrinfo;
#ifdef KERN_PROC2
int mib[6];
struct kinfo_proc2 *proc = NULL;
#else
int mib[4];
struct kinfo_proc *proc = NULL;
#endif
char **argv = NULL, *args = NULL;
size_t argv_alloc = 0, args_alloc = 0;
int argc;
zbx_regexp_t *proccomm_rxp = NULL;
if (4 < request->nparam)
{
SET_MSG_RESULT(result, zbx_strdup(NULL, "Too many parameters."));
ret = SYSINFO_RET_FAIL;
goto clean;
}
procname = get_rparam(request, 0);
param = get_rparam(request, 1);
if (NULL != param && '\0' != *param)
{
errno = 0;
if (NULL == (usrinfo = getpwnam(param)))
{
if (0 != errno)
{
SET_MSG_RESULT(result, zbx_dsprintf(NULL, "Cannot obtain user information: %s",
zbx_strerror(errno)));
ret = SYSINFO_RET_FAIL;
goto clean;
}
invalid_user = 1;
}
}
else
usrinfo = NULL;
param = get_rparam(request, 2);
if (NULL == param || '\0' == *param || 0 == strcmp(param, "sum"))
do_task = ZBX_DO_SUM;
else if (0 == strcmp(param, "avg"))
do_task = ZBX_DO_AVG;
else if (0 == strcmp(param, "max"))
do_task = ZBX_DO_MAX;
else if (0 == strcmp(param, "min"))
do_task = ZBX_DO_MIN;
else
{
SET_MSG_RESULT(result, zbx_strdup(NULL, "Invalid third parameter."));
ret = SYSINFO_RET_FAIL;
goto clean;
}
proccomm = get_rparam(request, 3);
if (NULL != proccomm && '\0' != *proccomm)
{
if (SUCCEED != zbx_regexp_compile(proccomm, &proccomm_rxp, &rxp_error))
{
SET_MSG_RESULT(result, zbx_dsprintf(NULL, "Invalid regular expression in fourth parameter: "
"%s", rxp_error));
zbx_free(rxp_error);
ret = SYSINFO_RET_FAIL;
goto clean;
}
}
if (1 == invalid_user) /* handle 0 for non-existent user after all parameters have been parsed and validated */
goto out;
pagesize = getpagesize();
mib[0] = CTL_KERN;
if (NULL != usrinfo)
{
mib[2] = KERN_PROC_UID;
mib[3] = usrinfo->pw_uid;
}
else
{
mib[2] = KERN_PROC_ALL;
mib[3] = 0;
}
#ifdef KERN_PROC2
mib[1] = KERN_PROC2;
mib[4] = sizeof(struct kinfo_proc2);
mib[5] = 0;
sz = 0;
if (0 != sysctl(mib, 6, NULL, &sz, NULL, 0))
{
SET_MSG_RESULT(result, zbx_dsprintf(NULL, "Cannot obtain necessary buffer size from system: %s",
zbx_strerror(errno)));
ret = SYSINFO_RET_FAIL;
goto clean;
}
proc = (struct kinfo_proc2 *)zbx_malloc(proc, sz);
mib[5] = (int)(sz / sizeof(struct kinfo_proc2));
if (0 != sysctl(mib, 6, proc, &sz, NULL, 0))
{
zbx_free(proc);
SET_MSG_RESULT(result, zbx_dsprintf(NULL, "Cannot obtain process information: %s",
zbx_strerror(errno)));
ret = SYSINFO_RET_FAIL;
goto clean;
}
count = sz / sizeof(struct kinfo_proc2);
#else
mib[1] = KERN_PROC;
sz = 0;
if (0 != sysctl(mib, 4, NULL, &sz, NULL, 0))
{
SET_MSG_RESULT(result, zbx_dsprintf(NULL, "Cannot obtain necessary buffer size from system: %s",
zbx_strerror(errno)));
ret = SYSINFO_RET_FAIL;
goto clean;
}
proc = (struct kinfo_proc *)zbx_malloc(proc, sz);
if (0 != sysctl(mib, 4, proc, &sz, NULL, 0))
{
zbx_free(proc);
SET_MSG_RESULT(result, zbx_dsprintf(NULL, "Cannot obtain process information: %s",
zbx_strerror(errno)));
ret = SYSINFO_RET_FAIL;
goto clean;
}
count = sz / sizeof(struct kinfo_proc);
#endif
for (i = 0; i < count; i++)
{
proc_ok = 0;
comm_ok = 0;
if (NULL == procname || '\0' == *procname || 0 == strcmp(procname, proc[i].ZBX_P_COMM))
proc_ok = 1;
if (NULL != proccomm && '\0' != *proccomm)
{
if (SUCCEED == proc_argv(proc[i].ZBX_P_PID, &argv, &argv_alloc, &argc))
{
collect_args(argv, argc, &args, &args_alloc);
if (0 == zbx_regexp_match_precompiled(args, proccomm_rxp))
comm_ok = 1;
}
}
else
comm_ok = 1;
if (proc_ok && comm_ok)
{
value = proc[i].ZBX_P_VM_TSIZE + proc[i].ZBX_P_VM_DSIZE + proc[i].ZBX_P_VM_SSIZE;
value *= pagesize;
if (0 == proccount++)
memsize = value;
else
{
if (ZBX_DO_MAX == do_task)
memsize = MAX(memsize, value);
else if (ZBX_DO_MIN == do_task)
memsize = MIN(memsize, value);
else
memsize += value;
}
}
}
zbx_free(proc);
zbx_free(argv);
zbx_free(args);
out:
if (ZBX_DO_AVG == do_task)
SET_DBL_RESULT(result, 0 == proccount ? 0 : memsize / proccount);
else
SET_UI64_RESULT(result, memsize);
clean:
if (NULL != proccomm_rxp)
zbx_regexp_free(proccomm_rxp);
return ret;
}
int proc_num(AGENT_REQUEST *request, AGENT_RESULT *result)
{
char *procname, *proccomm, *param, *rxp_error = NULL;
int zbx_proc_stat, count, proc_ok, stat_ok, comm_ok, argc, proccount = 0, invalid_user = 0,
ret = SYSINFO_RET_OK;
size_t sz;
struct passwd *usrinfo;
#ifdef KERN_PROC2
int mib[6];
struct kinfo_proc2 *proc = NULL;
#else
int mib[4];
struct kinfo_proc *proc = NULL;
#endif
char **argv = NULL, *args = NULL;
size_t argv_alloc = 0, args_alloc = 0;
zbx_regexp_t *proccomm_rxp = NULL;
if (4 < request->nparam)
{
SET_MSG_RESULT(result, zbx_strdup(NULL, "Too many parameters."));
ret = SYSINFO_RET_FAIL;
goto clean;
}
procname = get_rparam(request, 0);
param = get_rparam(request, 1);
if (NULL != param && '\0' != *param)
{
errno = 0;
if (NULL == (usrinfo = getpwnam(param)))
{
if (0 != errno)
{
SET_MSG_RESULT(result, zbx_dsprintf(NULL, "Cannot obtain user information: %s",
zbx_strerror(errno)));
ret = SYSINFO_RET_FAIL;
goto clean;
}
invalid_user = 1;
}
}
else
usrinfo = NULL;
param = get_rparam(request, 2);
if (NULL == param || '\0' == *param || 0 == strcmp(param, "all"))
zbx_proc_stat = ZBX_PROC_STAT_ALL;
else if (0 == strcmp(param, "run"))
zbx_proc_stat = ZBX_PROC_STAT_RUN;
else if (0 == strcmp(param, "sleep"))
zbx_proc_stat = ZBX_PROC_STAT_SLEEP;
else if (0 == strcmp(param, "zomb"))
zbx_proc_stat = ZBX_PROC_STAT_ZOMB;
else if (0 == strcmp(param, "disk"))
zbx_proc_stat = ZBX_PROC_STAT_DISK;
else if (0 == strcmp(param, "trace"))
zbx_proc_stat = ZBX_PROC_STAT_TRACE;
else
{
SET_MSG_RESULT(result, zbx_strdup(NULL, "Invalid third parameter."));
ret = SYSINFO_RET_FAIL;
goto clean;
}
proccomm = get_rparam(request, 3);
if (NULL != proccomm && '\0' != *proccomm)
{
if (SUCCEED != zbx_regexp_compile(proccomm, &proccomm_rxp, &rxp_error))
{
SET_MSG_RESULT(result, zbx_dsprintf(NULL, "Invalid regular expression in fourth parameter: "
"%s", rxp_error));
zbx_free(rxp_error);
ret = SYSINFO_RET_FAIL;
goto clean;
}
}
if (1 == invalid_user) /* handle 0 for non-existent user after all parameters have been parsed and validated */
goto out;
mib[0] = CTL_KERN;
if (NULL != usrinfo)
{
mib[2] = KERN_PROC_UID;
mib[3] = usrinfo->pw_uid;
}
else
{
mib[2] = KERN_PROC_ALL;
mib[3] = 0;
}
#ifdef KERN_PROC2
mib[1] = KERN_PROC2;
mib[4] = sizeof(struct kinfo_proc2);
mib[5] = 0;
sz = 0;
if (0 != sysctl(mib, 6, NULL, &sz, NULL, 0))
{
SET_MSG_RESULT(result, zbx_dsprintf(NULL, "Cannot obtain necessary buffer size from system: %s",
zbx_strerror(errno)));
ret = SYSINFO_RET_FAIL;
goto clean;
}
proc = (struct kinfo_proc2 *)zbx_malloc(proc, sz);
mib[5] = (int)(sz / sizeof(struct kinfo_proc2));
if (0 != sysctl(mib, 6, proc, &sz, NULL, 0))
{
zbx_free(proc);
SET_MSG_RESULT(result, zbx_dsprintf(NULL, "Cannot obtain process information: %s",
zbx_strerror(errno)));
ret = SYSINFO_RET_FAIL;
goto clean;
}
count = sz / sizeof(struct kinfo_proc2);
#else
mib[1] = KERN_PROC;
sz = 0;
if (0 != sysctl(mib, 4, NULL, &sz, NULL, 0))
{
SET_MSG_RESULT(result, zbx_dsprintf(NULL, "Cannot obtain necessary buffer size from system: %s",
zbx_strerror(errno)));
ret = SYSINFO_RET_FAIL;
goto clean;
}
proc = (struct kinfo_proc *)zbx_malloc(proc, sz);
if (0 != sysctl(mib, 4, proc, &sz, NULL, 0))
{
zbx_free(proc);
SET_MSG_RESULT(result, zbx_dsprintf(NULL, "Cannot obtain process information: %s",
zbx_strerror(errno)));
ret = SYSINFO_RET_FAIL;
goto clean;
}
count = sz / sizeof(struct kinfo_proc);
#endif
for (int i = 0; i < count; i++)
{
proc_ok = 0;
stat_ok = 0;
comm_ok = 0;
if (NULL == procname || '\0' == *procname || 0 == strcmp(procname, proc[i].ZBX_P_COMM))
proc_ok = 1;
if (ZBX_PROC_STAT_ALL != zbx_proc_stat)
{
switch (zbx_proc_stat)
{
case ZBX_PROC_STAT_RUN:
if (SRUN == proc[i].ZBX_P_STAT || SONPROC == proc[i].ZBX_P_STAT)
stat_ok = 1;
break;
case ZBX_PROC_STAT_SLEEP:
if (SSLEEP == proc[i].ZBX_P_STAT && 0 != (proc[i].ZBX_P_FLAG & P_SINTR))
stat_ok = 1;
break;
case ZBX_PROC_STAT_ZOMB:
if (SZOMB == proc[i].ZBX_P_STAT || SDEAD == proc[i].ZBX_P_STAT)
stat_ok = 1;
break;
case ZBX_PROC_STAT_DISK:
if (SSLEEP == proc[i].ZBX_P_STAT && 0 == (proc[i].ZBX_P_FLAG & P_SINTR))
stat_ok = 1;
break;
case ZBX_PROC_STAT_TRACE:
if (SSTOP == proc[i].ZBX_P_STAT)
stat_ok = 1;
break;
}
}
else
stat_ok = 1;
if (NULL != proccomm && '\0' != *proccomm)
{
if (SUCCEED == proc_argv(proc[i].ZBX_P_PID, &argv, &argv_alloc, &argc))
{
collect_args(argv, argc, &args, &args_alloc);
if (0 == zbx_regexp_match_precompiled(args, proccomm_rxp))
comm_ok = 1;
}
}
else
comm_ok = 1;
if (proc_ok && stat_ok && comm_ok)
proccount++;
}
zbx_free(proc);
zbx_free(argv);
zbx_free(args);
out:
SET_UI64_RESULT(result, proccount);
clean:
if (NULL != proccomm_rxp)
zbx_regexp_free(proccomm_rxp);
return ret;
}
static zbx_int64_t get_fds(int pid)
{
int mib[ZBX_KINFO_MIBS_NUM], num;
size_t sz;
struct kinfo_file *kf = NULL;
mib[0] = CTL_KERN;
mib[1] = KERN_FILE;
mib[2] = KERN_FILE_BYPID;
mib[3] = pid;
#ifdef KERN_PROC2
mib[4] = sizeof(struct kinfo_file);
mib[5] = 0;
#endif
if (0 != sysctl(mib, ZBX_KINFO_MIBS_NUM, NULL, &sz, NULL, 0))
return -1;
kf = (struct kinfo_file*)zbx_malloc(kf, sz);
if (0 != sysctl(mib, ZBX_KINFO_MIBS_NUM, kf, &sz, NULL, 0))
{
zbx_free(kf);
return -1;
}
num = sz / sizeof(struct kinfo_file);
zbx_free(kf);
return num;
}
static int get_kinfo_proc(struct ZBX_STRUCT_KINFO_PROC **proc, struct passwd *usrinfo, int pid, int *count,
char **error)
{
int mib[ZBX_KINFO_MIBS_NUM];
size_t sz = 0;
mib[0] = CTL_KERN;
#ifdef KERN_PROC2
mib[1] = KERN_PROC2;
mib[4] = sizeof(struct kinfo_proc2);
mib[5] = 0;
#else
mib[1] = KERN_PROC;
#endif
if (-1 != pid)
{
mib[2] = KERN_PROC_PID | KERN_PROC_SHOW_THREADS;
mib[3] = pid;
}
else if (NULL != usrinfo)
{
mib[2] = KERN_PROC_UID;
mib[3] = usrinfo->pw_uid;
}
else
{
mib[2] = KERN_PROC_ALL;
mib[3] = 0;
}
if (0 != sysctl(mib, ZBX_KINFO_MIBS_NUM, NULL, &sz, NULL, 0))
{
if (NULL != error)
{
*error = zbx_dsprintf(*error, "Cannot obtain necessary buffer size from system: %s",
zbx_strerror(errno));
}
return FAIL;
}
*proc = (struct ZBX_STRUCT_KINFO_PROC *)zbx_malloc(NULL, sz);
#ifdef KERN_PROC2
mib[5] = (int)(sz / sizeof(struct kinfo_proc2));
#endif
if (0 != sysctl(mib, ZBX_KINFO_MIBS_NUM, *proc, &sz, NULL, 0))
{
if (NULL != error)
*error = zbx_dsprintf(*error, "Cannot obtain process information: %s", zbx_strerror(errno));
zbx_free(proc);
return FAIL;
}
*count = sz / sizeof(struct ZBX_STRUCT_KINFO_PROC);
return SUCCEED;
}
static char *get_state(struct ZBX_STRUCT_KINFO_PROC *proc)
{
char *state;
if (SRUN == proc->ZBX_P_STAT || SONPROC == proc->ZBX_P_STAT)
state = zbx_strdup(NULL, "running");
else if (SSLEEP == proc->ZBX_P_STAT && 0 != (proc->ZBX_P_FLAG & P_SINTR))
state = zbx_strdup(NULL, "sleeping");
else if (SZOMB == proc->ZBX_P_STAT || SDEAD == proc->ZBX_P_STAT)
state = zbx_strdup(NULL, "zombie");
else if (SSLEEP == proc->ZBX_P_STAT && 0 == (proc->ZBX_P_FLAG & P_SINTR))
state = zbx_strdup(NULL, "disk sleep");
else if (SSTOP == proc->ZBX_P_STAT)
state = zbx_strdup(NULL, "tracing stop");
else
state = zbx_strdup(NULL, "other");
return state;
}
int proc_get(AGENT_REQUEST *request, AGENT_RESULT *result)
{
#define SUM_PROC_VALUE(param) \
do \
{ \
if (0 <= pdata->param && 0 <= pdata_cmp->param) \
pdata->param += pdata_cmp->param; \
else if (0 <= pdata->param) \
pdata->param = -1; \
} while(0)
char *procname, *proccomm, *param, *args = NULL, **argv = NULL, *error = NULL,
*rxp_error = NULL;
int invalid_user = 0, count, k, zbx_proc_mode, argc, pagesize;
size_t argv_alloc = 0, args_alloc = 0;
struct passwd *usrinfo;
zbx_vector_proc_data_ptr_t proc_data_ctx;
struct zbx_json j;
struct ZBX_STRUCT_KINFO_PROC *proc = NULL;
zbx_regexp_t *proccomm_rxp = NULL;
if (4 < request->nparam)
{
SET_MSG_RESULT(result, zbx_strdup(NULL, "Too many parameters."));
return SYSINFO_RET_FAIL;
}
procname = get_rparam(request, 0);
param = get_rparam(request, 1);
if (NULL != param && '\0' != *param)
{
errno = 0;
if (NULL == (usrinfo = getpwnam(param)))
{
if (0 != errno)
{
SET_MSG_RESULT(result, zbx_dsprintf(NULL, "Cannot obtain user information: %s",
zbx_strerror(errno)));
return SYSINFO_RET_FAIL;
}
invalid_user = 1;
}
}
else
usrinfo = NULL;
proccomm = get_rparam(request, 2);
if (NULL != proccomm && '\0' != *proccomm)
{
if (SUCCEED != zbx_regexp_compile(proccomm, &proccomm_rxp, &rxp_error))
{
SET_MSG_RESULT(result, zbx_dsprintf(NULL, "Invalid regular expression in third parameter: "
"%s", rxp_error));
zbx_free(rxp_error);
return SYSINFO_RET_FAIL;
}
}
param = get_rparam(request, 3);
if (NULL == param || '\0' == *param || 0 == strcmp(param, "process"))
{
zbx_proc_mode = ZBX_PROC_MODE_PROCESS;
}
else if (0 == strcmp(param, "thread"))
{
zbx_proc_mode = ZBX_PROC_MODE_THREAD;
}
else if (0 == strcmp(param, "summary") && (NULL == proccomm || '\0' == *proccomm))
{
zbx_proc_mode = ZBX_PROC_MODE_SUMMARY;
}
else
{
SET_MSG_RESULT(result, zbx_strdup(NULL, "Invalid fourth parameter."));
return SYSINFO_RET_FAIL;
}
if (1 == invalid_user)
{
zbx_json_initarray(&j, ZBX_JSON_STAT_BUF_LEN);
goto out;
}
pagesize = getpagesize();
if (SUCCEED != get_kinfo_proc(&proc, usrinfo, -1, &count, &error))
{
SET_MSG_RESULT(result, error);
return SYSINFO_RET_FAIL;
}
zbx_vector_proc_data_ptr_create(&proc_data_ctx);
for (int i = 0; i < count; i++)
{
proc_data_t *proc_data;
int count_thread;
struct ZBX_STRUCT_KINFO_PROC *proc_thread;
struct passwd *pw;
struct group *gr;
if (NULL != procname && '\0' != *procname && 0 != strcmp(procname, proc[i].ZBX_P_COMM))
continue;
if (SUCCEED == proc_argv(proc[i].ZBX_P_PID, &argv, &argv_alloc, &argc))
collect_args(argv, argc, &args, &args_alloc);
else
continue;
if (NULL != proccomm && '\0' != *proccomm && 0 != zbx_regexp_match_precompiled(args, proccomm_rxp))
continue;
pw = getpwuid(proc[i].ZBX_P_UID);
gr = getgrgid(proc[i].ZBX_P_GID);
if (ZBX_PROC_MODE_THREAD == zbx_proc_mode)
{
if (SUCCEED != get_kinfo_proc(&proc_thread, NULL, proc[i].ZBX_P_PID, &count_thread, NULL))
continue;
for (k = 0; k < count_thread; k++)
{
if (-1 == proc_thread[k].ZBX_P_TID)
continue;
proc_data = (proc_data_t *)zbx_malloc(NULL, sizeof(proc_data_t));
proc_data->tid = proc_thread[k].ZBX_P_TID;
proc_data->pid = proc_thread[k].ZBX_P_PID;
proc_data->ppid = proc_thread[k].ZBX_P_PPID;
proc_data->name = zbx_strdup(NULL, proc[i].ZBX_P_COMM);
proc_data->tname = zbx_strdup(NULL, proc_thread[k].ZBX_P_COMM);
proc_data->state = get_state(&proc_thread[k]);
proc_data->uid = proc[i].ZBX_P_UID;
proc_data->gid = proc[i].ZBX_P_GID;
proc_data->user = NULL != pw ? zbx_strdup(NULL, pw->pw_name) :
zbx_dsprintf(NULL, ZBX_FS_UI64, proc_data->uid);
proc_data->group = NULL != gr ? zbx_strdup(NULL, gr->gr_name) :
zbx_dsprintf(NULL, ZBX_FS_UI64, proc_data->gid);
proc_data->cputime_user = proc_thread[k].ZBX_P_UTIME;
proc_data->cputime_system = proc_thread[k].ZBX_P_STIME;
proc_data->ctx_switches = proc_thread[k].ZBX_P_NVCSW + proc_thread[k].ZBX_P_NIVCSW;
proc_data->io_read_op = proc_thread[k].ZBX_P_OUBLOCK;
proc_data->io_write_op = proc_thread[k].ZBX_P_INBLOCK;
proc_data->cmdline = NULL;
zbx_vector_proc_data_ptr_append(&proc_data_ctx, proc_data);
}
zbx_free(proc_thread);
}
else
{
proc_data = (proc_data_t *)zbx_malloc(NULL, sizeof(proc_data_t));
proc_data->name = zbx_strdup(NULL, proc[i].ZBX_P_COMM);
proc_data->size = (proc[i].ZBX_P_VM_TSIZE + proc[i].ZBX_P_VM_DSIZE + proc[i].ZBX_P_VM_SSIZE)
* pagesize;
proc_data->rss = proc[i].ZBX_P_VM_RSSIZE * pagesize;
proc_data->vsize = proc[i].ZBX_P_VM_VSIZE;
proc_data->tsize = proc[i].ZBX_P_VM_TSIZE * pagesize;
proc_data->dsize = proc[i].ZBX_P_VM_DSIZE * pagesize;
proc_data->ssize = proc[i].ZBX_P_VM_SSIZE * pagesize;
proc_data->cputime_user = proc[i].ZBX_P_UTIME;
proc_data->cputime_system = proc[i].ZBX_P_STIME;
proc_data->ctx_switches = proc[i].ZBX_P_NVCSW + proc[i].ZBX_P_NIVCSW;
proc_data->page_faults = proc[i].ZBX_P_MAJFLT;
proc_data->fds = get_fds((int)proc[i].ZBX_P_PID);
proc_data->io_read_op = proc[i].ZBX_P_OUBLOCK;
proc_data->io_write_op = proc[i].ZBX_P_INBLOCK;
proc_data->swap = proc[i].ZBX_P_SWAP;
if (ZBX_PROC_MODE_PROCESS == zbx_proc_mode)
{
proc_data->pid = proc[i].ZBX_P_PID;
proc_data->ppid = proc[i].ZBX_P_PPID;
proc_data->cmdline = zbx_strdup(NULL, args);
proc_data->state = get_state(&proc[i]);
proc_data->uid = proc[i].ZBX_P_UID;
proc_data->gid = proc[i].ZBX_P_GID;
proc_data->user = NULL != pw ? zbx_strdup(NULL, pw->pw_name) :
zbx_dsprintf(NULL, ZBX_FS_UI64, proc_data->uid);
proc_data->group = NULL != gr ? zbx_strdup(NULL, gr->gr_name) :
zbx_dsprintf(NULL, ZBX_FS_UI64, proc_data->gid);
}
else
{
proc_data->cmdline = NULL;
proc_data->state = NULL;
proc_data->user = NULL;
proc_data->group = NULL;
}
proc_data->tname = NULL;
if (SUCCEED == get_kinfo_proc(&proc_thread, NULL, proc[i].ZBX_P_PID, &count_thread, NULL) &&
1 < count_thread)
{
proc_data->threads = count_thread - 1;
zbx_free(proc_thread);
}
else
proc_data->threads = -1;
zbx_vector_proc_data_ptr_append(&proc_data_ctx, proc_data);
}
}
zbx_free(proc);
if (ZBX_PROC_MODE_SUMMARY == zbx_proc_mode)
{
for (int i = 0; i < proc_data_ctx.values_num; i++)
{
proc_data_t *pdata = proc_data_ctx.values[i];
pdata->processes = 1;
for (k = i + 1; k < proc_data_ctx.values_num; k++)
{
proc_data_t *pdata_cmp = proc_data_ctx.values[k];
if (0 == strcmp(pdata->name, pdata_cmp->name))
{
pdata->processes++;
pdata->rss += pdata_cmp->rss;
pdata->vsize += pdata_cmp->vsize;
pdata->tsize += pdata_cmp->tsize;
pdata->dsize += pdata_cmp->dsize;
pdata->ssize += pdata_cmp->ssize;
pdata->size += pdata_cmp->size;
pdata->swap += pdata_cmp->swap;
pdata->cputime_user += pdata_cmp->cputime_user;
pdata->cputime_system += pdata_cmp->cputime_system;
pdata->ctx_switches += pdata_cmp->ctx_switches;
pdata->page_faults += pdata_cmp->page_faults;
pdata->io_read_op += pdata_cmp->io_read_op;
pdata->io_write_op += pdata_cmp->io_write_op;
SUM_PROC_VALUE(threads);
SUM_PROC_VALUE(fds);
proc_data_free(pdata_cmp);
zbx_vector_proc_data_ptr_remove(&proc_data_ctx, k--);
}
}
}
}
zbx_json_initarray(&j, ZBX_JSON_STAT_BUF_LEN);
for (int i = 0; i < proc_data_ctx.values_num; i++)
{
proc_data_t *pdata = proc_data_ctx.values[i];
zbx_json_addobject(&j, NULL);
if (ZBX_PROC_MODE_PROCESS == zbx_proc_mode)
{
zbx_json_addint64(&j, "pid", pdata->pid);
zbx_json_addint64(&j, "ppid", pdata->ppid);
zbx_json_addstring(&j, "name", ZBX_NULL2EMPTY_STR(pdata->name), ZBX_JSON_TYPE_STRING);
zbx_json_addstring(&j, "cmdline", ZBX_NULL2EMPTY_STR(pdata->cmdline), ZBX_JSON_TYPE_STRING);
zbx_json_addstring(&j, "user", ZBX_NULL2EMPTY_STR(pdata->user), ZBX_JSON_TYPE_STRING);
zbx_json_addstring(&j, "group", ZBX_NULL2EMPTY_STR(pdata->group), ZBX_JSON_TYPE_STRING);
zbx_json_adduint64(&j, "uid", pdata->uid);
zbx_json_adduint64(&j, "gid", pdata->gid);
zbx_json_adduint64(&j, "vsize", pdata->vsize);
zbx_json_adduint64(&j, "rss", pdata->rss);
zbx_json_adduint64(&j, "size", pdata->size);
zbx_json_adduint64(&j, "tsize", pdata->tsize);
zbx_json_adduint64(&j, "dsize", pdata->dsize);
zbx_json_adduint64(&j, "ssize", pdata->ssize);
zbx_json_adduint64(&j, "cputime_user", pdata->cputime_user);
zbx_json_adduint64(&j, "cputime_system", pdata->cputime_system);
zbx_json_addstring(&j, "state", ZBX_NULL2EMPTY_STR(pdata->state), ZBX_JSON_TYPE_STRING);
zbx_json_adduint64(&j, "ctx_switches", pdata->ctx_switches);
zbx_json_addint64(&j, "threads", pdata->threads);
zbx_json_adduint64(&j, "page_faults", pdata->page_faults);
zbx_json_addint64(&j, "fds", pdata->fds);
zbx_json_adduint64(&j, "swap", pdata->swap);
zbx_json_adduint64(&j, "io_read_op", pdata->io_read_op);
zbx_json_adduint64(&j, "io_write_op", pdata->io_write_op);
}
else if (ZBX_PROC_MODE_THREAD == zbx_proc_mode)
{
zbx_json_addint64(&j, "pid", pdata->pid);
zbx_json_addint64(&j, "ppid", pdata->ppid);
zbx_json_addstring(&j, "name", ZBX_NULL2EMPTY_STR(pdata->name), ZBX_JSON_TYPE_STRING);
zbx_json_addstring(&j, "user", ZBX_NULL2EMPTY_STR(pdata->user), ZBX_JSON_TYPE_STRING);
zbx_json_addstring(&j, "group", ZBX_NULL2EMPTY_STR(pdata->group), ZBX_JSON_TYPE_STRING);
zbx_json_adduint64(&j, "uid", pdata->uid);
zbx_json_adduint64(&j, "gid", pdata->gid);
zbx_json_addstring(&j, "tname", ZBX_NULL2EMPTY_STR(pdata->tname), ZBX_JSON_TYPE_STRING);
zbx_json_addint64(&j, "tid", pdata->tid);
zbx_json_adduint64(&j, "cputime_user", pdata->cputime_user);
zbx_json_adduint64(&j, "cputime_system", pdata->cputime_system);
zbx_json_addstring(&j, "state", ZBX_NULL2EMPTY_STR(pdata->state), ZBX_JSON_TYPE_STRING);
zbx_json_adduint64(&j, "ctx_switches", pdata->ctx_switches);
zbx_json_adduint64(&j, "io_read_op", pdata->io_read_op);
zbx_json_adduint64(&j, "io_write_op", pdata->io_write_op);
}
else
{
zbx_json_addstring(&j, "name", ZBX_NULL2EMPTY_STR(pdata->name), ZBX_JSON_TYPE_STRING);
zbx_json_adduint64(&j, "processes", pdata->processes);
zbx_json_adduint64(&j, "vsize", pdata->vsize);
zbx_json_adduint64(&j, "rss", pdata->rss);
zbx_json_adduint64(&j, "size", pdata->size);
zbx_json_adduint64(&j, "tsize", pdata->tsize);
zbx_json_adduint64(&j, "dsize", pdata->dsize);
zbx_json_adduint64(&j, "ssize", pdata->ssize);
zbx_json_adduint64(&j, "cputime_user", pdata->cputime_user);
zbx_json_adduint64(&j, "cputime_system", pdata->cputime_system);
zbx_json_adduint64(&j, "ctx_switches", pdata->ctx_switches);
zbx_json_addint64(&j, "threads", pdata->threads);
zbx_json_adduint64(&j, "page_faults", pdata->page_faults);
zbx_json_addint64(&j, "fds", pdata->fds);
zbx_json_adduint64(&j, "swap", pdata->swap);
zbx_json_adduint64(&j, "io_read_op", pdata->io_read_op);
zbx_json_adduint64(&j, "io_write_op", pdata->io_write_op);
}
zbx_json_close(&j);
}
zbx_vector_proc_data_ptr_clear_ext(&proc_data_ctx, proc_data_free);
zbx_vector_proc_data_ptr_destroy(&proc_data_ctx);
out:
zbx_json_close(&j);
SET_STR_RESULT(result, zbx_strdup(NULL, j.buffer));
zbx_json_free(&j);
if (NULL != proccomm_rxp)
zbx_regexp_free(proccomm_rxp);
return SYSINFO_RET_OK;
#undef SUM_PROC_VALUE
}